Loader

Infrared Welding Machines

George Fischer's Infrared fusion technology is a substantial improvement over older fusion methods such as contact butt fusion and socket fusion. IR fusion is accomplished by use of a revolutionary infrared heat source and computerised installer guidance program ensuring high quality, reproducible fusion welds of high mechanical strength. Completing the system are SYGEF HP PVDF butt fusion fittings and valves specifically designed for use with the IR-63 Plus and IR-225 Plus fusion machines. For the unique demands of today’s ultra-pure water systems, the George Fischer SYGEF HP PVDF piping and IR Plus™ (Infrared) fusion systems offer the highest degree of repeatability and confidence available today.

The IR-Plus fusion machines from GF Piping Systems meet the highest demands in terms of fusion weld quality and purity. They are the fusion machines of choice in the microelectronic (semicon, photovoltaic) chemical process and life science industries as well as in biotechnology. The IR-Plus fusion machines comply fully with the strict EU Regulation 2002/95/EC. Handles sizes up to 450mm

We stock welding rod in PVC-U and PP.

Weld bead is typically 50% smaller than conventional butt-fusion (DVS 2207)

Conforms to DVS 2207-6 (2003) and SEMI F57 Standards.

APPLICATIONS:

Jointing technology is used in areas like mains or distribution lines, service connections, fire fighting systems, irrigation or industrial applications. Alternative to conventional butt-fusion in applications where purity, weld-strength, traceability and speed of installation are imperative. Typical market segments include Semiconductor/ Microelectronics, Chemical Processing and workshop pre-fabrication.

ADVANTAGES:

  • Non-contact radiant heating
  • Jointing pressure produced by overlap distance
  • Software controlled, reproducible and monitored fusion and cooling process
  • Cooling process determined by fusion zone temperature via infrared sensor (IR225/315-Plus)
  • Remote fusion unit (IR63-Plus)
  • Pre-programmed and key-protected fusion parameters
  • Fusion protocol storage of 2500 fusions with unique fusion numbers
  • Fusion factor M 0.90
  • Fusion + cooling time typically between 38% and 62% of conventional butt-fusion (DVS 2207)
  • User guidance in more than 12 languages with graphic icons
  • Integrated error recognition
  • Automated maintenance intervals
  • World-wide welder installation training and certification programme
  • World-wide weld-bead inspection training and certification programme

  • keyboard_arrow_downPlastic Pipe Sizes:

    Plastic pipe dimensions are, by convention, specified by the outside diameter, usually denoted by e. This may be supplemented by stating the nominal inside diameter or DN. Sometimes the pipe wall thickness is specified by the SDR or Standard Dimension Ratio.

    SDR = d divided by e.

    Where d = the outside diameter (mm)

    Where e = the pipe wall thickness (mm)

  • keyboard_arrow_downWhat Pipe Size?

    The pipe size can be calculated as follows:

    di = 18.8 √Q1 ÷  v

    Where:

    di = Inside pipe diameter (mm)

    Q1 = Flowrate in m3/h

    v = Flow velocity, usually 0.5 to 1.0 m/s for suction lines

    OR

    1.0 to 3.0 m/s for discharge lines.

  • keyboard_arrow_downPressure loss in straight pipe:

    A rough calculation of pressure loss in straight length plastic pipe can be done using,

    Δ Pr = λ × (L ÷ di) × (ρ ÷ 2.102) × v2

    Where:

    Δ Pr = Pressure loss (bar)

    λ = Pipe friction factor

    L = Length of straight pipe (m)

    di = Inside pipe diameter

    ρ = Liquid density (kg/m3)

    v = Flow velocity (m/s)

    For smooth bore plastic pipe: λ = 0.02